

Large scale pneumatic actuator made by 3D printing hydrogel

Academic Year: 2025–2026

Supervisors: L. Fiore and L. Tadrist (louison.fiore@univ-amu.fr, loic.tadrist@univ-amu.fr)

Host Laboratory: Institut des Sciences du Mouvement UMR7287, SBI Team

Location: Aix-en-Provence (IUT Aix campus)

Duration: 4 - 6 months

Salary: Yes

Recommended Level: BAC+4/5 (Engineering or Master)

Required Skills: Prototyping (3D printing), Programming (Python, Javascript), Automation,

Material science

Summary

Figure 1: Moulage silicone pour la fabrication d'actionneur pneumatique à grand nombre de cellules.

We designed a new class of pneumatic actuators based on *Mimosa Pudica* pulvinus (pulvinus: plant muscle). These actuators are resilient to damage and allow for complex motion due to a large number of actuator (each cell can be actuated independently). They are made of silicone by molding around a hydrogel mold. The internship goal is to leverage on a 3D printing machine made in the lab to create cellular pneumatic actuatoras made of multiple cells (up to 512).

Tasks:

- 1) The intern will have to optimize the silicone molding process by adding a mixing nozzle to the existing device.
- 2) Print a 64 and a 512 cells pneumatic prototype for investigation of motion capabilities and mechanical properties control.
- 3) The experimental bench is existing and the student will leverage on it to obtain data.

PhD Thesis offer: This internship could lead to a PhD thesis.

Work Environment:

The Institut des Sciences du Mouvement (ISM) is a multidisciplinary research unit. The laboratory's research focuses on the study of locomotion in living organisms from various perspectives. The Bio-Inspired Systems (SBI) team at ISM aims to study principles and strategies derived from biological systems to inspire and design innovative technological systems.